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Abstract: The advent of the cloud computing makes storage outsourcing become a rising trend, which promotes the 

secure remote data auditing a hot topic that appeared in the research literature. Recently some research consider the 

problem of secure and efficient public data integrity auditing for shared dynamic data. However, these schemes are still 
not secure against the collusion of cloud storage server and revoked group users during user revocation in practical 

cloud storage system. In this paper, we figure out the collusion attack in the exiting scheme and provide an efficient 

public integrity auditing scheme with secure group user revocation based on vector commitment and verifier-local 

revocation group signature. We design a concrete scheme based on the our scheme definition. Our scheme supports the 

public checking and efficient user revocation and also some nice properties, such as confidently, efficiency, count 

ability and traceability of secure group user revocation. Finally, the security and experimental analysis show that, 

compared with its relevant schemes our scheme is also secure and efficient. 
 

Index Terms: Public integrity auditing, dynamic data, victor commitment, group signature, cloud computing. 

 

1. INTRODUCTION 
 

The development of cloud computing motivates 

enterprises and organizations to outsource their data to 

third-party cloud service providers (CSPs), which will 

improve the storage limitation of resource constrain local 

devices. Recently, some commercial cloud storage 

services, such as the simple storage service (S3) [1] on-

line data backup services of Amazon and some practical 
cloud based software Google Drive [2], Dropbox [3], 

Mozy [4], Bitcasa [5], and Memopal [6], have been built 

for cloud application. Since the cloud servers may return 

an invalid result in some cases, such as server 

hardware/software failure, human maintenance and 

malicious attack [7], new forms of assurance of data 

integrity and accessibility are required to protect the 

security and privacy of cloud user’s data. 

To overcome the above critical security challenge of 

today’s cloud storage services, simple replication and 

protocols like Rabin’s data dispersion scheme [8] are far 

from practical application. 
 

The formers are not practical because a recent IDC report 

suggests that data-generation is outpacing storage 

availability [9]. The later protocols ensure the 

availability of data when a quorum of repositories, such 

as k-out-of-n of shared data, is given. However, they do 

not provide assurances about the availability of each 

repositories, which will limit the assurance that the 

protocols can provide to relying parties. 
 

For providing the integrity and availability of remote 

cloud store, some solutions [10], [11] and their variants 

[12], [13], [14], [15], [16], [17], [18] have been 

proposed. In these solutions, when a scheme supports 

data modification, we call it dynamic scheme, otherwise 

static one (or limited dynamic scheme, if a scheme could  

 
 

only efficiently support some specified operation, such as 

append). A scheme is publicly verifiable means that the data 

integrity check can be performed not only by data owners, 

but also by any third-party auditor. However, the dynamic 

schemes above focus on the cases where there is a data 

owner and only the data owner could modify the data. 

 
Recently, the development of cloud computing boosted 

some applications [19], [20], [21], where the cloud service 

is used as a collaboration platform. In these software 

development environments, multiple users in a group need 

to share the source code, and they need to access, modify, 

compile and run the shared source code at any time and 

place. The new cooperation network model in cloud makes 

the remote data auditing schemes become infeasible, where 

only the data owner can update its data. Obviously, trivially 

extending a scheme with an online data owner to update the 

data for a group is inappropriate for the data owner. It will 

cause tremendous communication and computation 
overhead to data owner, which will result in the single point 

of data owner. To support multiple user data operation, 

Wang et al. [22] proposed a data integrity based on ring 

signature. In the scheme, the user revocation problem is not 

considered and the auditing cost is linear to the group size 

and data size. To further enhance the previous scheme and 

support group user revocation, Wang et al. [23] designed a 

scheme based on proxy re-signatures. However, the scheme 

assumed that the private and authenticated channels exist 

between each pare of entities and there is no collusion 

among them. Also, the auditing cost of the scheme is linear 
to the group size. Another attempt to improve the previous 

scheme and make the scheme efficient, scalable and 

collusion resistant is Yuan and Yu [24], who designed a 

dynamic public integrity auditing scheme with group user 
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revocation. The authors designed polynomial 

authentication tags and adopt proxy tag update 

techniques in their scheme, which make their scheme 

support public checking and efficient user revocation. 

However, in their scheme, the authors do not consider 
the data secrecy of group users. It means that, their 

scheme could efficiently support plaintext data update 

and integrity auditing, while not ciphertext data. In their 

scheme, if the data owner trivially shares a group key 

among the group users, the defection or revocation any 

group user will force the group users to update their 

shared key. Also, the data owner does not take part in the 

user revocation phase, where the cloud itself could 

conduct the user revocation phase. In this case, the 

collusion of revoked user and the cloud server will give 

chance to malicious cloud server where the cloud server 
could update the data as many time as designed and 

provide a legal data finally. To the best of our 

knowledge, there is still no solution for the above 

problem in public integrity auditing with group user 

modification. 

 

The deficiency of above schemes motivates us to explore 

how to design an efficient and reliable scheme, while 

achieving secure group user revocation. To the end, we 

propose a construction which not only supports group 

data encryption and decryption during the data 

modification processing, but also realizes efficient and 
secure user revocation. Our idea is to apply vector 

commitment scheme [25] over the database. Then we 

leverage the Asymmetric Group Key Agreement 

(AGKA) [26] and group signatures [27] to support 

ciphertext data base update among group users and 

efficient group user revocation respectively. Specifically, 

the group user uses the AGKA protocol to 

encrypt/decrypt the share database, which will guarantee 

that a user in the group will be able to encrypt/decrypt a 

message from any other group users. The group signature 

will prevent the collusion of cloud and revoked group 
users, where the data owner will take part in the user 

revocation phase and the cloud could not revoke the data 

that last modified by the revoked user. 

 

1.1 Our Contribution  

In this paper, we further study the problem of construing 

public integrity auditing for shared dynamic data with 

group user revocation. Our contributions are three folds: 

 

1) We explore on the secure and efficient shared data 

integrate auditing for multi-user operation for 

ciphertext database.  
2) By incorporating the primitives of victor 

commitment, asymmetric group key agreement and 

group signature, we propose an efficient data auditing 

scheme while at the same time providing some new 

features, such as traceability and countability.  

3) We provide the security and efficiency analysis of our 

scheme, and the analysis results show that our scheme 

is secure and efficient.  

 
Figure 1 the cloud storage model 

 

1.2 Organization  

The rest of this paper is organized as follows: In section 2, 

we describe the problem formulation. In section 3, we 
present the used preliminaries. Then, we provide the detail 

of our scheme in section 4. We conduct the security and 

efficiency analysis in section 5 and section 6 and leave the 

related works in section 7. Finally, we show our conclusion 

in section 8. 

 

2. PROBLEM FORMULATION 
 

In this section, we first describe the cloud storage model of 

our system. Then, we provide the threat model considered 

and security goals we want to achieve. 

 

2.1 Cloud Storage Model  

In the cloud storage model as shown in Figure 1, there are 

three entities, namely the cloud storage server, group users 

and a Third Part Auditor (TPA). 

Group users consist of a data owner and a number of users 

who are authorized to access and modify the data by the 

data owner. The cloud storage server is semi-trusted, who 

provides data storage services for the group users. TPA 

could be any entity in the cloud, which will be able to 

conduct the data integrity of the shared data stored in the 

cloud server. In our system, the data owner could encrypt 
and upload its data to the remote cloud storage server. Also, 

he/she shares the privilege such as access and modify 

(compile and execute if necessary) to a number of group 

users. The TPA could efficiently verify the integrity of the 

Data last modified Data last modified legitimate data  

 

 
Figure 2. Security problem of server proxy group user 

revocation 
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authorized by user Eve by cloud server by the data owner 

data stored in the cloud storage server, even the data is 

frequently updated by the group users. The data owner is 

different from the other group users, he/she could 

securely revoke a group user when a group user is found 
malicious or the contract of the user is expired. 

 

2.2 Threat Model and Security Goals 
Our threat model considers two types of attack: 

 

1) An attacker outside the group (include the revoked 

group user cloud storage server) may obtain some 

knowledge of the plaintext of the data. Actually, this 

kind of attacker has to at least break the security of 

the adopted group data encryption scheme.  

2) The cloud storage server colludes with the revoked 
group users, and they want to provide a illegal data 

without being detected.  

 

Actually, in cloud environment, we assume that the 

cloud storage server is semi-trusted. Thus, it is 

reasonable that a revoked user will collude with the 

cloud server and share its secret group key to the cloud 

storage server. In this case, although the server proxy 

group user revocation way [24] brings much 

communication and computation cost saving, it will 

make the scheme insecure against a malicious cloud 

storage server who can get the secret key of revoked 
users during the user revocation phase. Thus, a malicious 

cloud server will be able to make data m, last modified 

by a user that needed to be revoked, into a malicious data 

m′. In the user revocation process, the cloud could make 

the malicious data m′ become valid. To overcome the 

problems above, we aim to achieve the following 

security goals in our paper: 

 

1) Security. A scheme is secure if for any database and 

any probabilistic polynomial time adversary, the 

adversary can not convince a verifier to accept an 
invalid output.  

2) Correctness. A scheme is correct if for any database 

and for any updated data m by a valid group user, the 

output of the verification by an honest cloud storage 

server is always the value m. Here, m is a ciphertext 

if the scheme could efficiently support encrypted 

database.  

3) Efficiency. A scheme is efficient if for any data, the 

computation and storage overhead invested by any 

client user must be independent of the size of the 

shared data.  

4) Countability. A scheme is countable, if for any data 

the TPA can provide a proof for this misbehavior, 

when the dishonest cloud storage server has tampered 

with the database.  

5) Traceability. We require that the data owner is able 

to trace the last user who update the data (data item), 

when the data is generated by the generation 

algorithm and every signature generated by the user is 

valid.  

3. PRELIMINARIES 
 

Our scheme makes use of bilinear groups. The security of 

the scheme depends on the Strong DiffieHellman 

assumption and the Decision Linear assumption. In this 
section, we review the definitions of bilinear groups and the 

complexity assumption. 

 

3.1 Bilinear Groups  

We review a few concepts related to bilinear maps, which 

follow the notation of [28]. Let G1 and G2 be two 

multiplicative cyclic groups of prime order p, g1 is a 

generator of G1 and g2 is a generator of G2. ψ is an 

efficiently computable isomorphism from G2 to G1 with 

ψ(g2) = g1, and e : G1 × G2 → GT is a bilinear map with 

the following properties: 
 

1) Computability: there exits an efficiently computable 

algorithm for computing map e;  

2) Bilinearity: for all u ∈ G1, v ∈ G2 and a,b ∈ Zp, e(ua,vb) 

= e(u,v)ab;  

3) Non-degeneracy: e(g1,g2) 6= 1.  

 

3.2 Complexity Assumption  

The security of our scheme relies on the difficulty of some 

problems: the Strong Diffie-Hellman problem, the Decision 

Linear problem, and the Computational Diffie-Hellman 
problem. We describe these problems as follows. 

 

Definition 1. q-Strong Diffie-Hellman problem. Let G1, G2 

be cyclic group of prime order p, where possibly G1 = G2. 

Let g1 be a generator of G1 and g2 be a generator of G2. 

Given a (q + 2) −  as input, 

output a pair  where x ∈ Z∗p. 
The assumption could be used to construct short signature 

scheme without random oracles [29]. The assumption has 

properties similar to the Strong-RSA assumption [30] and 

the properties are adopted for building short group signature 

in our scheme.  

 

Definition 2. Decision Linear problem. Let g1 be a 
generator of G1, and G1 be a cyclic group of prime order p. 

Given u, v, h, ua, ub,uc ∈ G1 as input, output yes if a + b = c 

and no otherwise. 

Boneh et al. [31] introduced the Decision Linear assumption 

and they proved that the problem is intractable in generic 

bilinear groups. 

 

Definition 3. Square Computational Diffie-Hellman 

(Square-CDH) problem. With g ∈ G1 as above, given (g,gx) 

for x ∈R Zp as input, output gx2. 
It has been proved that the Square-CDH assumption is 

equivalent to the classical CDH assumption [32], [33]. 

 

3.3 Vector Commitment  

Commitment is a fundamental primitive in cryptography 

and it plays an important role in security protocols such as 

voting, identification, zero-knowledge proof, etc. The 
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hiding property of commitment requires that it should 

not reveal information of the committed message, and 

the binding property requires that the committing 

mechanism should not allow a sender to change his/her 

mind about the committed message. 
 

Recently, Catalano and Fiore [25] put forward a new 

primitive called Vector Commitment. Vector 

Commitment satisfies position binding that an adversary 

should not be able to open a commitment to two different 

values at the same position, and the Vector Commitment 

is concise, which means that the size of the commitment 

string and its openings have to be independent of the 

vector length. We provide the formal definition of Vector 

Commitment [25] as follows. 

 
Definition 4. (Vector Commitment) A vector 

commitment scheme is a collection of six polynomial-

time algorithms (VC.KeyGen, VC.Com, VC.Open, 

VC.Ver, VC.Update, VC.ProofUpdate) such that: 
 

VC.KeyGen(1k,q). Given the security parameter k and 

the size q of the committed vector (with q = poly(k)), the 

key generation outputs some public parameters pp. 
 

VC.Compp(m1,...,mq). On input a sequence of q 

messages m1,...,mq ∈ M (M is the message space ) and 

the public parameters pp, the committing algorithm 

outputs a commitment string C and an auxiliary 

information aux. 
 

VC.Openpp(m,i, aux). This algorithm is run by the 

committer to produce a proof i that m is the i-th 

committed message. In particular, notice that in the case 
when some updates have occurred the auxiliary 

information aux can include the update information 

produced by these updates. 
 

VC.Verpp(C,m,i,Λi). The verification algorithm accepts 

(i.e., it outputs 1) only if Λi is a valid proof that C was 

created to a sequence m1,...,mq such that m = mi. 
 

VC.Updatepp(C,m,m′,i). This algorithm is run by the 

committer who produces C and wants to update it by 

changing the i-th message to m′. The algorithm takes as 

input the old message m, the new message m′ and the 

position i. It outputs a new commitment C’ together with 

an update information U. 
 

VC.ProofUpdatepp(C,Λj,m′,i,U). This algorithm can be 

run by any user who holds a proof Λj for some message 

at position j w.r.t. C, and it allows the user to compute an 

updated proof Λ′j (and the updated commitment C′) such 

that Λ′j will be valid with regard to C′ which contains m′ 

as the new message at position i. Basically, the value U 

contains the update information which is needed to 

compute such values. 
 

The primitive of verifiable database with efficient update 

based on vector commitment is useful to solve the 

problem of verifiable data outsourcing. Recently, Chen et 

al. [34], [35] figured out that the basic vector commitment 

scheme suffers from forward automatic update attack and 

backward substitution update attack. They also proposed a 

new framework for verifiable database with efficient update 
from vector commitment, which is not only public 

verifiable for dynamic outsourced data but also secure 

against the two attacks. The solution in their scheme is easy 

to apply in our scheme, which will overcome the attacks 

they figured out in our scheme. 

 

3.4 Group Signature with User Revocation  

We present the formal definition of group signatures with 

verifier-local revocation [27] as follows. 

 

Definition 5. A verifier-local group signature scheme is a 

collection of three polynomial-time algorithms 

 

(VLR.KeyGen, VLR.Sign, VLR.Verify), which behaves as 

follows: 

 

VLR.KeyGen(n). This randomized algorithm takes as input 

a parameter n, the number of members of the group. It 

outputs a group public key gpk, an n-element vector of user 

keys gsk = 

 

(gsk[1],gsk[2],...,gsk[n]), and an n-element vector of user 

revocation tokens grt, similarly indexed. 
 

VLR.Sign(gpk,gsk[i],M). This randomized algorithm takes 

as input the group public key gpk, a private key gsk[i], and 

a message M ∈ {0,1}∗, and returns a signature σ. 

 

VLR.Verify(gpk,RL,σ,M). The verification algorithm takes 

as input the group public key gpk, a set of revocation tokens 

RL (whose elements form a subset of the elements of grt), 

and a purported signature σ on a message M. It returns 

either valid or invalid. The latter response can mean either 
that σ is not a valid signature, or that the user who generated 

it has been revoked. 

 

4. SCHEME CONSTRUCTION 
 

In this section, we provide the formal definition of our 

scheme according to the definition in [23], [24]. Then, we 

design the concrete scheme based on our definition. 

 

4.1 New Framework 
We consider the database DB as a set of tuple (x,mx), where 

x is an index and mx is the corresponding value. Informally, 
a public integrity auditing scheme with updates allows a 

resource-constrained client to outsource the storage of a 

very large database to a remote server. Later, the client can 

retrieve and update the database records stored in the server 

and publicly audit the integrity of the updated data. 

 

According to previous researches, the proposed framework 

of our public integrity auditing for shared dynamic cloud 

data with secure group user revocation is given as follows: 
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Setup(1k,DB): 

 

Let the database be DB = (i,mi) for 1 ≤ i ≤ q and the 

database is shared by a group of n users with only one 

data owner. 
 

1) The data owner run the key generation algorithm of 

vector commitment to obtain the public parameters pp  

 

← VC.KeyGen(1k,q).  

 

2) Run the key generation of verifier-local revocation to 

obtain the user keys and revocations (gsk, grt) ←  

 

VLR.KeyGen(1k,n), where gsk = (gsk[1],gsk[2]...gsk[n]) 

and an n-element vector of user revocation tokens grt.  
 

3) Run the computing algorithm to compute commitment 

and auxiliary information (C, aux) ← 

VC.Compp(c1,...,cq). Let the current database modifier 

be group user s(0 ≤ s ≤ n − 1), and  

 

(gsk[s],gpk) be the secret/public key pair of the group 

user. Let   be the 
commitment on the latest database vector, where t is a 

counter with 0 as its initial value.  

 

4) Run the signing algorithm over the commitment C. 

Specially, for the t-th time the group user s(0 ≤ s ≤ n − 

1), whose secret key is gsk[s], compute and output  
 

a signature σt ← VLR.Sign(gpk,gsk[s],{C(t − 1),Ct,t}). 

Then, sends the signature σt to the cloud storage server. 

If σt is valid, then the server computes C(t) = σt·Ct. Also, 

the cloud storage server adds the  

information of Σ(t) = (C(t − 1),Ct,t,σt) to aux. 

5)  Finally, set public key parameter  

PK = (pp,gpk,C(t − 1),C(t)). 

 

Query(PK, PP, aux,DB,i): 
 

1) A group user run the opening algorithm to compute a 

proof Λi ← VC.Openpp(ci,i, aux), where Λi is the proof 

of the i-th committed message and return τ = (ci,Λi,Σ(t)).  

 

Verify(PK,RL,i,τ): 
1) Parse τ = (ci,Λi,Σ(t)). If the signature is valid after 

running the algorithm VLR.Verify(gpk,RL,Σ(T)). Then, 

run the verification algorithm of vector commitment 

{0,1} ← VC.Verpp(C(t),σt,ci,i,Λi). The algorithm 

accepts when it output 1, which means that Λi is a valid 

proof that Ct was created by a sequence c1,...cq, such that 

c = ci. Otherwise, return an error ⊥. 

 

Update(i,τ): 
 

1) A group user first queries and verifies the database to 

make sure the current database is valid. More precisely, 

the group user obtain τ ←Query(PK, PP, aux,DB,i) and 

check that Verify(PK,i,τ) = mi.  

 

2) Run the update algorithm over the new data and output 

the updated commitment and the update information  

 
(C′,U) ← VC.Update(C,m,m′,i).  

 

ProofUpdate(C,Λj,c′i,i,U): 

 

1) A third part auditor can first verify that, compared with 

the stored counter t, the latest counter equals t + 1. Then, 

run the proof of update algorithm of vector commitment to 

compute an update proof Λj ←  

 

VC.ProofUpdatepp(C,Λj,m′i,i,U) for the message at 

position j, such that Λj is valid with respect to C′ which 
contains m′ as the new message at position j. Here, U = 

(m,m′,i) is the update information.  

 

2) Verify the commitment C′, and its corresponding proof 

Λi is also valid over message m′i.  

UserRevocation(PK,i,τ): 

 

1) The third part auditor can run the verification algorithm 

of verifier-local revocation and return either valid or invalid 

{0,1} ← VLR.Verify(gpk,RL,σ,M). Here, RL are a set of 

revocation tokens. 

 

4.2 A Concrete Scheme  

In this section, we provide a concrete scheme from vector 

commitment [25] and verifier-local revocation group 

signature [27]. 

 

Setup(1k,DB): 

Let k be a security parameter and DB = (i,mi) for 1 ≤ i ≤ q 

be the database. The database DB = (i,mi) is shared by a 

group of n users with only one data owner. The message 

space is M = Zp. 

 
1) Let G,GT be two bilinear groups of prime order p 

equipped with a bilinear map e : G × G → GT, and g be a 

random generator of G.  

 

Randomly choose z1,...,zq ←R Zp. For all i = 1,...,q, set hi 

= gzi. For all i,j = 1,...,q,i 6= j, set hi,j = gzizj. The data owner 

runs the key generation algorithm of vector commitment 

VC.KeyGen(1k,q) to obtain the public parameters PP = (p, 

q, G, GT, H, g, ({hi})i∈ [q], {hi,j} i,j∈ [q],i=6 j) and the 

message space M= Zp. By using a collision resistant hash 

function H: {0,1}∗  → Zp, our scheme can be easily 

extended to support arbitrary messages in {0,1}∗ .  
 

2) Run the key generation of verifier-local revocation  

VLR.KeyGen(1k,n). Let G1, G2 be cyclic group of prime 

order p, and g1 be a generator of G1 and g2 be a generator 

of G2. Consider bilinear groups (G1,G2) with isomorphism 

ψ, where g1 ← ψ(g2). Select γ ←R Z
∗

p and set . 

For each user, generate an SDH tuple (Ai,xi) by selecting xi 
←R Z∗ p such that γ+xi 6= 0, and setting 
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. Then, set the group public key gpk = 

(g1,g2,w). The private key is a tuple gsk[i] = (Ai,xi). 

 

The revocation token corresponding to a user’s secret 
key is grt[i] = Ai. Finally, the algorithm outputs (gpk, 

gsk, grk). γ is only known to the private-key issuer (the 

data owner). 

 

3) Run the computing algorithm 

VC.Compp(m1,...,mq) to compute commitment 

 

m and auxiliary information aux = (m1,...,mq). 

 

4) Employ hash functions H0 and H as random 

oracles, with respective ranges G22 and Zp. For the t-th 
time data updating, run the signing algorithm  

 

VLR.Sign(gpk,gsk[i],{C(t − 1),C
t
,t}) over the 

commitment. Assume that the input message is {C(t −  

 

1),Ct,t} ∈  {0,1}∗ . Then, pick a random nonce r ←R Zp 

and obtain generators (u,ˆ vˆ) ← H0(gpk,{C(t −  

 

1),Ct,t},r) ∈  G22 and compute their images in G1 with u 

← ψ(uˆ) and v ← ψ(vˆ) . Select an exponent α ←R Zp  

 
and compute T1 ← uα and T2 ← Aivα. Set δ ← xiα ∈  

Zp. Pick blinding values rα, rx, and rδ ←R Zp. Compute 

helper values R1 ← urα, R2 ← e(T2,g2)rx · e(v,w)−rα · 

e(v,g2)−rδ and  . 

 

Compute a challenge value c ← H(gpk,(C(t−1),C 

,t),r,T1,T2,R1,R2,R3) ∈  Zp using H. Compute sα = rα + 

cα, sx = rx + cxi, and sδ = rδ + cδ ∈  Zp. Finally, output a 

signature σt ← (r,T1,T2,c,sα,sx,sδ). Then, sends the 

signature σt to the cloud storage server. If σt is valid, then 

the server computes C(t) = σt · Ct. Also, the cloud 

storage server adds the information of Σ(t) = (C(t − 
1),Ct,t,σt) to aux. 5) Set public key parameter PK = 

(pp,gpk,C(t −1),C(t)). 

 

Query(PK, pp, aux,DB,i): 

 

1) We  assume  that  the  current  public  key  is  PK = 

(PP,gpk,C(t − 1),C(t)). A user runs the opening algorithm 

VC.Open  a proof 

of the i-th 
committed message and return τ = (mti,Λti,Σ(t)). 

 

Verify(PK,i,τ): 
 

1) On input a group public key gpk, a purported 

signature σt, and the message {C(t − 1),Ct,t}, the auditor 

first verify whether the signature is valid.  
 

2) If τ = (mti,Λi,Σ(t)), run the verification algorithm 

of vector commitment VC.Verpp(Cit,cti,i,Λti)  to  verify  

that  the  equation  holds. 

The algorithm accepts when it outputs 1, which means that 

Λti is a valid proof that Ct was created to a sequence 

m1,...mq, such that m = mi. 

 

Update(i,τ): 
 

1) A group user first queries and verifies the database to 

make sure the current database is valid.  

 

2) If the user wanted to update mi to m′i, the user runs the 

update algorithm VC.Update(C,m,m′,i) and outputs the 

updated commitment C′ = C · him′−m and the updated 

information U = (m,m′,i).  

 

ProofUpdate(C,Λj,m′i,i,U): 

 
1) The third part auditor can run the proof of update 

algorithm of vector commitment to compute an update 

proof Λj ← VC.ProofUpdatepp(C,Λj,m′,i,U) for the 

message at position j, such that Λj is valid with respect to C′ 

which contains m′ as the new message at position j.  

 

2) For the auditor who owns a proof Λj, the auditor uses 

the update information U = (m,m′,i) to generate the proof of 

update. If i 6= j,  

 

compute  

 
the updated commitment and the   updated   proof   is   Λ′j   

=  Λj   ·  (him   −m)  zj = , 
compute the updated commitment C′ = C·him −m while do 

not change the proof Λi. Verify the commitment C′ and its 

corresponding proof Λi is also valid over message m′i.  

 

UserRevocation(PK,i,τ): 

 

1) To verify the validity of the signature, the auditor need to 

conduct the signature check. The third part auditor runs the 

verification algorithm of verifier-local revocation 

VLR.Verify(gpk,RL,σ,M), M = C(t − 1),Ct,t. More 

precisely, compute uˆ and vˆ and their image u  

← ψ(uˆ) and v← ψ(vˆ) in G1. Derive R˜1 ← usα/T1c, 
R˜2  

← e(T2,g2)sx · e(v,w)−sα · e(v,g2)−sδ · 

(e(T2,w)/e(g1,g2))c and  

 

 . Check the challenge that c =? 
 

H(gpk,(C(t − 1),Ct,t),r,T1,T2,R˜1,R˜2,R˜3) and return either 

valid or invalid. Then, conduct the revocation check. 

 

2) For each element A ∈  RL, check whether A is 

encoded in (T1,T2) by checking if e(T2/A,uˆ) =? e(T1,vˆ). If 

no element of RL is encoded in (T1,T2), the signer of σ has 
not been revoked. Here, RL is a set of revocation tokens.  

 

4.3 Supporting Ciphertext Database  

In cloud storage outsourcing environment, the outsourced 

data is usually encrypted database, which is usually 
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implicitly assumed in the exiting academic research. 

Actually, our scheme could support the auditing of 

database of both plaintext and ciphertext database. 

However, it is not straightforward to extend a scheme to 

support encrypted database. 
 

In order to achieve the confidentiality of the data record 

mx, the client can use his/her secret key to encrypt each 

mx using a encryption scheme. When there is only one 

user (data owner) in the group, the user only needs to 

choose a random secret key and encrypt the data using a 

secure symmetric encryption scheme. However, when 

the scheme needs to support multi-user data 

modification, while at the same time keeping the shared 

data encrypted, a shared secret key among group users 

will result in single point failure problem. It means that 
any group user (revoked or leave) leak the shared secret 

key will break the confidentiality guarantee of the data. 

 

To overcome the above problem, we need to adopt a 

scheme, which could support group users data 

modification. Luckily, Wu et al. [26] designed an 

Asymmetric Group Key Agreement scheme (ASGKA). 

The scheme has a nice property that, instead of a 

common secret key, only a shared encryption key is 

negotiated in an ASGKA protocol. Also, in the scheme, 

the public key can be simultaneously used to verify 

signatures and encrypt messages while any signature can 
be used to decrypt ciphertext under this public key. 

Using the bilinear pairings, the authors instantiate a one-

round ASGKA protocol tightly reduced to the decision 

Bilinear Diffie-Hellman Exponentiation (BDHE) 

assumption in the standard model. Thus, according to the 

ASGKA protocol, we consider the case of encrypted 

database (x,cx), where x is an index and cx is the 

corresponding cipher value. 

 

We provide the detailed changes upon our scheme to 

support encrypted database. 
 

1) In the Setup phase, the scheme has to run the key 

agreement of ASGKA for the group users. Then, the 

database DB = (i,mi) is encrypted by the group key 

gpk of data owner. Finally, the stored database is a 

ciphertext database DB = (i,ci).  

 

2) In the second step of the Update phase, a group user 

firstly decrypts the record ci using the ASGKA secret 

key gsk[∗ ] to get plaintext database DB = (i,mi). 

Then, update the data to m′i, and later encrypt the data 

with the public key gpk of ASGKA scheme to get the 
new encrypted database DB = (i,c′i).  

 

4.4 Probabilistic Detection  

Actually, the position binding property of vector 

commitment of the scheme allows the cloud storage 

server to prove the data item correctness of certain 

position. Ateniese et. al. [10] figured out that the 

sampling ability greatly reduces the overhead on the 

server and provides high detection probability of server 

misbehavior. Then, among the q data items, we assume that 

the third part auditor randomly select x items out of the q-

block item database as the target item. In the database, only 

y items of the database are incorrect. Then, if x, y and q 
satisfy the specific relationship, the third part auditor could 

provide a high possession detection ability over the 

database. The result is interesting that when y is a fraction 

of the total item number q, the detection probability of 

server misbehavior is a constant amount of item. For 

example, if y = 1% of q, then the third part auditor asks for 

460 blocks and 300 blocks in order to achieve the detection 

probability of at least 99% and 95%, respectively. 

 

5. CONCLUSION 
 
The primitive of verifiable database with efficient updates is 

an important way to solve the problem of verifiable 

outsourcing of storage. We propose a scheme to realize 

efficient and secure data integrity auditing for share 

dynamic data with multi-user modification. The scheme 

vector commitment, Asymmetric Group Key Agreement 

(AGKA) and group signatures with user revocation are 

adopt to achieve the data integrity auditing of remote data. 

Beside the public data auditing, the combining of the three 

primitive enable our scheme to outsource ciphertext 

database to remote cloud and support secure group users 

revocation to shared dynamic data. We provide security 
analysis of our scheme, and it shows that our scheme 

provide data confidentiality for group users, and it is also 

secure against the collusion attack from the cloud storage 

server and revoked group users. Also, the performance 

analysis shows that, compared with its relevant schemes, 

our scheme is also efficient in different phases. 
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